

# Calculation of Natural Gas Calorific Value with the Agilent 990 PRO Micro GC System

#### Author

Jie Zhang Agilent Technologies, Inc.

#### **Abstract**

This Application Note gives a functionality introduction of the Agilent 990 process (PRO) Micro GC on how to autonomously analyze and calculate the natural gas energy content.

## Introduction

Natural gas is an important energy resource. It is widely used in different industries to melt, dry, bake, and glaze a product. General households use it for cooking, heating, and lighting. It can also be used as fuel for vehicles. The chemical energy of natural gas is released by the reaction of the natural gas with oxygen. The trade of natural gas is mainly determined by its energy content. Usually, gas chromatography (GC) analysis of natural gas is used to estimate its energy content.

Several organizations, such as the Gas Processors Association (GPA), which collaborates with the American Petroleum Institute, ASTM international formerly American Society of Testing and Materials—and the International Organization for Standardization (ISO) have developed different standards for calculation of natural gas energy based on the individual compound energy values and other physical constants.

The 990 process (PRO) Micro GC can work as an intelligent process GC to quickly analyze the composition of a natural gas stream, then automatically make onboard calculations of its energy content according to the above mentioned standards.

With the assistance of Agilent PROstation software, a user can load predefined energy calculation methods (following GPA/ATSM/ ISO/GOST standards) to the 990 PRO Micro GC. With the completion of each chromatography analysis, the 990 PRO Micro GC generates the normalized mole concentration of each targeted component, then autonomously feeds them to an internal energy content calculation process. Finally, a report for the analyzed gas stream can be generated with information on energy content, including total superior/inferior calorific value (depending on water existing in either the liquid or gaseous state), density, relative density, and Wobbe index.

This Application Note demonstrates the composition analysis and calorific value calculation of natural gas by the 990 PRO Micro GC.

### **Experimental**

Simulated natural gas was analyzed on a two-channel Agilent 990 PRO Micro GC. Channel 1 is a 10 m Agilent J&W CP-PoraPLOT U backflush channel for nitrogen, methane, carbon dioxide, and ethane analysis. Channel 2 is a 6 m Agilent J&W CP-Sil 5CB straight channel for propane, isobutane, butane, 2,2-dimethylpropane, isopentane, pentane, and hexane analysis.

The 990 Micro GC used has PRO and energy meter licenses. The PRO license enables the autonomous running of the instrument at prescheduled time and onboard data processing, including integration, identification, and quantitation based on the preloaded method. The energy meter license enables the automatic onboard calculation of fuel gas energy content based on the PRO GC quantitation result. Table 1 lists the analytical methods used for natural gas composition analysis. The composition of the gas sample is tabulated in Table 2. The analytical parameters were prewritten into the 990 PRO Micro GC mainboard with assistance of Agilent PROstation software. The external standard calibration curve for each targeted component was developed using PROstation.

**Table 1.** Configuration and analytical conditions ofthe Agilent 990 PRO Micro GC.

| The Agilent 990 PRO Micro GC Parameters |                                                 |                                             |  |  |  |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|--|
| Channel Type                            | 10 m Agilent J&W<br>CP-PoraPLOT U,<br>backflush | 6 m Agilent J&W<br>CP-Sil 5 CB,<br>straight |  |  |  |  |  |  |  |  |
| Sampling<br>Time                        | 30 seconds                                      | 30 seconds                                  |  |  |  |  |  |  |  |  |
| Injector<br>Temperature                 | 110 °C                                          | 110 °C                                      |  |  |  |  |  |  |  |  |
| Column<br>Pressure                      | 200 kPa                                         | 175 kPa                                     |  |  |  |  |  |  |  |  |
| Column<br>Temperature                   | 80 °C                                           | 70 °C                                       |  |  |  |  |  |  |  |  |
| Backflush<br>Time                       | 11.3 seconds                                    | NA                                          |  |  |  |  |  |  |  |  |

Table 2. Composition of simulated natural gas.

| Compound            | Concentration (mol%) |  |  |  |  |
|---------------------|----------------------|--|--|--|--|
| Nitrogen            | 2.04%                |  |  |  |  |
| Carbon Dioxide      | 3.12%                |  |  |  |  |
| Ethane              | 0.575%               |  |  |  |  |
| Propane             | 0.084%               |  |  |  |  |
| Isobutane           | 0.011%               |  |  |  |  |
| Butane              | 0.011%               |  |  |  |  |
| 2,2-Dimethylpropane | 0.0106%              |  |  |  |  |
| Isopentane          | 0.0097%              |  |  |  |  |
| Pentane             | 0.011%               |  |  |  |  |
| Hexane              | 0.0102%              |  |  |  |  |
| Methane             | Balance              |  |  |  |  |
|                     |                      |  |  |  |  |

The normalization method was defined and written into the mainboard together with the calibration and energy calculation methods prior to the real sample analysis. When the analysis was initiated, the PRO GC deploys these methods for onboard data collection and calculation to generate energy information about the sample. In this application, the calculation method was developed based on ISO standard 6976-2016 as shown in the method setting (Figure 1).

| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Colouistion Mathe                                                                                                                                                                               |                                                 | γ                                                                                                | Corre                                                                                               | onent Constar                                                                                                                                                               | te                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |               |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculation Method                                                                                                                                                                              |                                                 |                                                                                                  | Lomp                                                                                                | urient Lonstar                                                                                                                                                              | 115                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| ISO 6976-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 995 Calorific v                                                                                                                                                                                 | alue unit c                                     | onversion                                                                                        | No Conversio                                                                                        | n                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |               |         |
| ISO 6976-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 016                                                                                                                                                                                             |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| GPA 2172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗔 Sum C                                                                                                                                                                                         | C6+ uniden                                      | tified compor                                                                                    | nents                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| C ASTM D358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| C GOST-2266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57                                                                                                                                                                                              |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| C GOST-3136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                              |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 🗖 Back                                                                                                                                                                                          | flush to de                                     | tector C6+ Sj                                                                                    | plit                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| Combustion T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | moorahura 🕞                                                                                                                                                                                     |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mperature 273.15 K 💌                                                                                                                                                                            |                                                 | Caburtada                                                                                        | atas Carrotau t                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | where the second second                                                                                                                                                                                 | T             |         |
| Reference Tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                 |                                                 | Saturated W                                                                                      | ater Constant:                                                                                      | 2.31                                                                                                                                                                        | Mole %                                                                                                                                                                                                                                                                                 | at the Selected Reference                                                                                                                                                                               | e Temperature |         |
| Compressibility /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Air (Zair): 0.99963                                                                                                                                                                             |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |               |         |
| alorific Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                               |                                                 |                                                                                                  |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         | ==            |         |
| alorific Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calculation Method                                                                                                                                                                              |                                                 | )                                                                                                | Compo                                                                                               | nent Consta                                                                                                                                                                 | ints                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |               | , ) [ [ |
| alorific Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calculation Method                                                                                                                                                                              |                                                 | )                                                                                                | Compo                                                                                               | nent Consta                                                                                                                                                                 | ints                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |               | , .     |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculation Method                                                                                                                                                                              | Index                                           | SF                                                                                               |                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | Comp.Tune                                                                                                                                                                                               |               |         |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculation Method                                                                                                                                                                              | Index<br>1                                      | SF<br>0.0173                                                                                     | Compo<br>MW<br>28.0135                                                                              | nent Consta<br>Hs.Mol<br>0                                                                                                                                                  | nts<br>Bj<br>O                                                                                                                                                                                                                                                                         | Comp. Type<br>0. Component                                                                                                                                                                              | _             | , (     |
| Component<br>Active C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calculation Method Sort                                                                                                                                                                         | _                                               | _                                                                                                | MW                                                                                                  | Hs.Mol                                                                                                                                                                      | Bj                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |               |         |
| Component<br>Active C<br>1<br>2<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calculation Method Sort Component Name , nitrogen                                                                                                                                               | 1                                               | 0.0173                                                                                           | MW<br>28.0135                                                                                       | Hs.Mol<br>0                                                                                                                                                                 | Bi<br>O                                                                                                                                                                                                                                                                                | 0. Component                                                                                                                                                                                            |               | ,       |
| Component<br>Active C<br>I I<br>2<br>3<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calculation Method Sort Component Name . nitrogen 2. methane                                                                                                                                    | 1<br>2<br>3<br>4                                | 0.0173<br>0.0436<br>0.0728<br>0.0894                                                             | MW<br>28.0135<br>16.043<br>44.01<br>30.07                                                           | Hs.Mol<br>0<br>890.63<br>0<br>1560.69                                                                                                                                       | Bj<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                 | 0. Component<br>0. Component<br>0. Component<br>0. Component                                                                                                                                            |               |         |
| Component<br>Active C<br>2<br>2<br>3<br>3<br>4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calculation Method Sort Component Name . nitrogen 2. methane 3. CO2 . exthane 3. propane                                                                                                        | 1<br>2<br>3<br>4<br>5                           | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288                                                   | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097                                                | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17                                                                                                                            | Bi<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                       | 0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component                                                                                                                            |               |         |
| Component<br>Active C<br>1<br>2<br>3<br>4<br>4<br>5<br>5<br>5<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculation Method<br>Sort<br>Introgen<br>Introgen<br>Introgen<br>Introgen<br>I cO2<br>I. ethane<br>I. ethane<br>I. ethane<br>I. propane<br>I. ibutane                                          | 1<br>2<br>3<br>4<br>5<br>6                      | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703                                         | MW<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097<br>58.123                                       | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17<br>2868.2                                                                                                                  | Bj<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                             | 0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component                                                                                                            |               |         |
| Component<br>Active C<br>1<br>2<br>4<br>4<br>3<br>4<br>4<br>5<br>5<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>3. CO2<br>4. ethane<br>5. propane<br>3. ibutane<br>7. mbutane                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7                 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1703                               | MW<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097<br>58.123<br>58.123                             | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17<br>2868.2<br>2877.4                                                                                                        | Bj           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             | 0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component                                                                                            |               |         |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>3. CO2<br>4. ethane<br>5. propane<br>5. propane<br>5. ptotane<br>7. rubutane<br>8. neo-pentane                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8            | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025                     | MW<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097<br>58.123<br>58.123<br>58.123<br>72.15          | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17<br>2868.2<br>2877.4<br>3514.61                                                                                             | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             | 0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component<br>0. Component                                                                            |               |         |
| Component<br>t Active C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>3. CO2<br>4. ethane<br>3. propane<br>3. ibutane<br>3. rebutane<br>3. neo-pentane<br>3. ipentane                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168           | MW<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15 | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17<br>2868.2<br>2877.4<br>3514.61<br>3528.83                                                                                  | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     | O. Component                  |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>3. CO2<br>4. ethane<br>3. propane<br>3. ibutane<br>3. rebutane<br>3. neo-pentane<br>3. ipentane                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168           | MW<br>28.0135<br>16.043<br>44.01<br>30.07<br>44.097<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15 | Hs.Mol<br>0<br>890.63<br>0<br>1560.69<br>2219.17<br>2868.2<br>2877.4<br>3514.61<br>3528.83                                                                                  | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component                  |               | , .     |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |
| Component<br>Active C<br>Active C<br>Activ | Calculation Method<br>Sort<br>Component Name<br>. nitrogen<br>2. methane<br>8. CO2<br>9. echane<br>9. copane<br>9. robutane<br>9. novpentane<br>9. neo-pentane<br>10. jepentane<br>0. n.pentane | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.0173<br>0.0436<br>0.0728<br>0.0894<br>0.1288<br>0.1703<br>0.1783<br>0.2025<br>0.2168<br>0.2345 | MW/<br>28.0135<br>16.043<br>44.01<br>30.07<br>58.123<br>58.123<br>58.123<br>72.15<br>72.15<br>72.15 | Hs.Mol           0           890.63           0           1560.69           2219.17           2868.2           2877.4           3514.61           3528.83           3535.77 | Bi           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O. Component     O. Component |               |         |

Figure 1. Settings of the calorific value calculation method based on ISO standard in Agilent PROstation software.

## **Results and discussion**

Figures 2a and 2b show the chromatograms generated on channel 1 and channel 2 for simulated natural gas sample. The peaks were integrated onboard according to the integration parameters optimized for each analytical channel. The integration result was used to generate the quantitation result for each target component based on the prewritten ESTD curves. The concentration normalization was made over two analytical channels for all target components according to the setting in the normalization table (Figure 3). Then, the normalized concentrations were used for onboard calorific value calculation according to predefined energy calculation methods.

Figure 4 shows the quantitation and energy content calculation results for the simulated natural gas. The "energy" part shows the standard which is followed for calculation, and the key physical properties required to be calculated in the standard, such as compressibility, relative density/density, superior/inferior heating value in molar/weight/volume units, and Wobbe index. The types of properties shown in the report vary according to the standard requirement.

The quantitation results based on chromatography analysis are shown in the bottom of the report. Both the ESTD concentration and normalized concentration are reported. The report was generated in Agilent PROstation software as soon as each

chromatography separation was finished. The analysis cycle under the applied conditions in this work is approximately 90 seconds from sampling to separation and report generated. If continuous flow mode is used, the analysis cycle time can be further reduced to 60s.

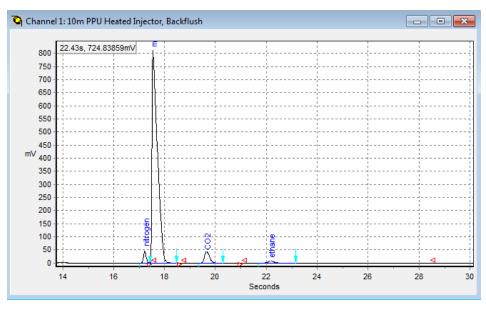



Figure 2a. Chromatogram of  $N_2$ /methane/CO<sub>2</sub>/ethane on 10 m Agilent J&W CP-PoraPLOT U backflush channel.

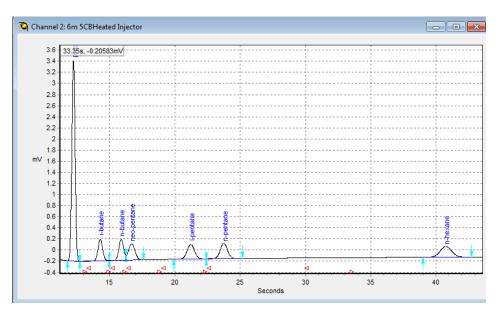
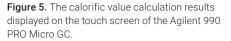



Figure 2b. Chromatogram of C3-C6 hydrocarbons on the 6 m Agilent J&W CP-Sil 5 CB channel.

| M N | ormalizat    | ion Table   |         |        |               |          |            |           |              |              |        |
|-----|--------------|-------------|---------|--------|---------------|----------|------------|-----------|--------------|--------------|--------|
|     | Synchron     | ize         |         |        |               |          |            |           |              |              |        |
| #   | Active       | Peak Name   | Channel | Ignore | Bridge Comp # | Estimate | Estim.Conc | Test.Conc | RefConcPeak# | RefPeakConc% | Group# |
| 1   | <            | nitrogen    | 1       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 2   | $\checkmark$ | methane     | 1       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 3   |              | C02         | 1       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 4   | $\checkmark$ | ethane      | 1       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 5   | $\checkmark$ | propane     | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 6   | $\checkmark$ | i-butane    | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 7   | $\checkmark$ | n-butane    | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 8   | $\checkmark$ | neo-pentane | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 9   | $\checkmark$ | i-pentane   | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 10  | ✓            | n-pentane   | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
| 11  | ✓            | n-hexane    | 2       |        | 0. None       |          | 0          | 0         | 0            | 0            | 0      |
|     |              |             |         |        |               |          |            |           |              |              |        |

Figure 3. Normalization table settings for natural gas analysis in this work.

| SAM                   | PLE         |          |                               |           | ENERGY              |                    |               |             |                |            |        | CONDITIONS          |       |                  |
|-----------------------|-------------|----------|-------------------------------|-----------|---------------------|--------------------|---------------|-------------|----------------|------------|--------|---------------------|-------|------------------|
| Samp                  | ling Time   |          | 08/10/2019                    | 14:10:50  | Calc.Method         |                    | ISO 6976-20   | 16 Dry      | Saturat        | ed         |        |                     |       |                  |
| Run N                 | Number      |          | 3                             |           | Water Mole.         |                    | [%]           |             | 2.31           |            |        | ENVIRONMENT         |       |                  |
| Run T                 | Гуре        |          | Analysis                      |           | Compressibility     |                    | [•]           | 0.9981      | 0.9975         |            |        | Cabinet Temperature | [°C]  | 34               |
| Calibr                | ation Level | 1        | 0                             |           | Molar Mass          |                    | [kg/kmol]     | 17.2666     | 17.283         | Э          |        | Ambient Pressure    | [kPa] | 102.1            |
| Stream                | m #         |          | 1                             | (checked) | Relative Density    | ,Ideal             | [•]           | 0.5961      | 0.5967         |            |        |                     |       |                  |
| Sum B                 | ESTD        |          | 1.0238                        |           | Relative Density    | ,Real              | [•]           | 0.5971      | 0.5980         |            |        | SITE INFO           |       |                  |
| Sum B                 | Estimates   |          | 0.0000                        |           | Gas Density,Ide     | al                 | [kg/m3]       | 0.7178      | 0.7185         |            |        | Customer ID         |       |                  |
| ium A                 | Areas       |          | 1130262.377                   | '5        | Gas Density,Re      | al                 | [kg/m3]       | 0.7192      | 0.7203         |            |        | Instrument Name     |       | 990-PRO Micro GC |
| otal                  | Peaks       |          | 11                            |           | Superior Heatin     | g Value (Volume R  | eal) [MJ/m3]  | 35.60       | 34.79          |            |        | Serial Number       |       | 10001            |
| s Sta                 | rtup Run    |          | False                         |           | Inferior Heating    | Value (Volume Re   | al) [MJ/m3]   | 32.01       | 31.29          |            |        | Tag Number          |       |                  |
| Jnkn                  | own Peaks   | 5        | 6                             |           | Superior Heatin     | g Value (Volume Id | ea) [MJ/m3]   | 35.53       | 34.71          |            |        | Cylinder 1 Tag      |       |                  |
| Curren                | nt Stream ‡ | ŧ        | 0                             |           | Inferior Heating    | Value (Volume Ide  | a) [MJ/m3]    | 31.95       | 31.21          |            |        |                     |       |                  |
|                       |             |          |                               |           | Superior Heatin     | g Value(Mass)      | [MJ/kg]       | 49.50       | 48.30          |            |        |                     |       |                  |
|                       |             |          |                               |           | Inferior Heating    | Value(Mass)        | [MJ/kg]       | 44.51       | 43.44          |            |        |                     |       |                  |
|                       |             |          |                               |           | Superior Heatin     | g Value(Molar)     | [kJ/mol]      | 854.62      | 834.88         |            |        |                     |       |                  |
|                       |             |          | Inferior Heating Value(Molar) |           | [kJ/mol]            | 768.57             | 750.82        | 750.82      |                |            |        |                     |       |                  |
|                       | Hide non A  |          |                               |           | Wobbe Index (Real ) |                    | [MJ/m3]       | 46.07       | 44.99          |            |        |                     |       |                  |
| Hide Ignored Appl.pks |             |          | Wobbe Index inferior          |           | [MJ/m3]             | 41.43              | 40.46         |             |                |            |        |                     |       |                  |
| #                     | Channel     | Peakna   | ame                           |           | ESTD Conc.          | Norm. Conc.        | Retention [s] | Area        | Height         | Meth-Index | Group# | R.F.                |       | Weight%          |
| 1                     | 1           | nitroger | n                             |           | 0.019951            | 1.948797           | 17.38         | 24782.7169  | 13635198.2879  | 1          | 0      | 8.0504E-07          |       | 3.1617           |
| 2                     | 1           | methan   | ie                            |           | 0.965245            | 94.283973          | 17.60         | 746196.9431 | 132556588.1529 | 2          | 0      | 1.293553E-06        |       | 87.5998          |
| 3                     | 1           | CO2      |                               |           | 0.031328            | 3.060127           | 19.75         | 38813.4314  | 6589405.0554   | 3          | 0      | 8.071555E-07        |       | 7.7997           |
| 4                     | 1           | ethane   |                               |           | 0.005773            | 0.563867           | 22.33         | 7757.2239   | 1375294.4939   | 4          | 0      | 7.441665E-07        |       | 0.9820           |
| 5                     | 2           | propan   | e                             |           | 0.000837            | 0.081791           | 12.24         | 1714.7951   | 352927.5260    | 5          | 0      | 4.883076E-07        |       | 0.2089           |
| 6                     | 2           | i-butane | e                             |           | 0.000107            | 0.010478           | 14.29         | 290.7882    | 39425.5766     | 6          | 0      | 3.688964E-07        |       | 0.0353           |
| 7                     | 2           | n-butar  | ne                            |           | 0.000106            | 0.010367           | 15.89         | 283.3521    | 38176.9311     | 7          | 0      | 3.745673E-07        |       | 0.0349           |
| 8                     | 2           | neo-pei  | ntane                         |           | 0.000106            | 0.010374           | 16.69         | 282.8061    | 29531.1083     | 8          | 0      | 3.755436E-07        |       | 0.0433           |
| 9                     | 2           | i-pentar | ne                            |           | 0.000097            | 0.009514           | 21.22         | 290.1013    | 26104.6298     | 9          | 0      | 3.357591E-07        |       | 0.0398           |
| 10                    | 2           | n-penta  | ane                           |           | 0.000110            | 0.010771           | 23.74         | 300.9403    | 27215.5715     | 10         | 0      | 3.664084E-07        |       | 0.0450           |
| 11                    | 2           | n-hexar  | ne                            |           | 0.000102            | 0.009941           | 40.74         | 332.8352    | 19101.1810     | 11         | 0      | 3.057677E-07        |       | 0.0496           |
|                       |             |          |                               |           |                     |                    |               |             |                |            |        |                     |       |                  |


Figure 4. Energy content calculation report generated by the Agilent 990 PRO Micro GC.

The 990 PRO Micro GC works as a "detector" or "sensor" for natural gas stream analysis. PROstation software is used to

- Develop methods, including analytical, qualitative and quantitative method, and energy content calculation method
- Set the automation mode
- Define how to output the results

All these "commands" are written to the mainboard by PROstation. In the real analysis, the Pro Micro GC can run by itself without connection to the PROstation software. The quantitation result and energy content will not be displayed in the format shown here if PROstation software is not connected. Instead, the results can be displayed in a scrollable way on the touch screen of the 990 PRO Micro GC, as shown in Figure 5. Additionally, the result can be output through FTP in .txt file or using Modbus protocol to other terminals for monitoring and recording. Analog output is another approach to produce analysis results in voltage or current signal through a connection to the extension analog board (Figure 6). The conversion of analog signal and the quantitation result or energy contents can be predefined and loaded on the PRO GC mainboard.





#### Conclusion

This Application Note demonstrates natural gas composition analysis and energy content calculation by the Agilent 990 PRO Micro GC. The PRO license and energy content license are activated on the 990 PRO Micro GC to enable automated fuel gas composition analysis and energy content calculation. The analysis process from sampling, separation, quantitation to calorific value calculation and result output, are autonomously executed according to the prewritten method and automation mode on the PRO Micro GC mainboard. The energy calculation methods are developed with compliance to different international standards, including ASTM, ISO, GPA, and GOST standards. All methods are developed in PROstation and then downloaded to the 990 PRO Micro GC for its independent and automated operation. The energy content calculation results can be shown on a local touch screen or outputted through FTP, Modbus, and analog signal for monitoring and recording.

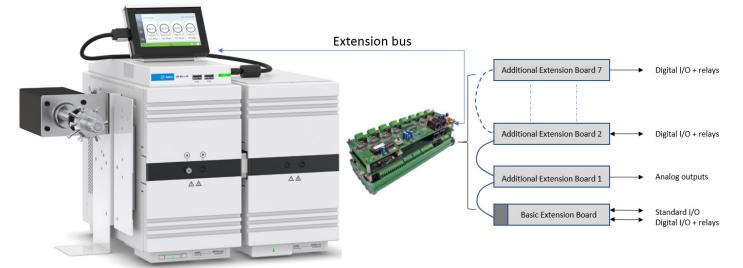



Figure 6. Agilent 990 PRO Micro GC connection with extension board for analog output of analysis results.

#### www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Printed in the USA, October 9, 2019 5994-1374EN

