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To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile
the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial
indexing RNA sequencing).We applied sci-RNA-seq to profile nearly 50,000 cells from the
nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold “shotgun”
cellular coverage of its somatic cell composition. From these data, we defined consensus
expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to
as few as one or two cells in the L2 worm.We integrated these profiles with whole-animal
chromatin immunoprecipitation sequencing data to deconvolve the cell type–specific
effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful
resource for nematode biology and foreshadow similar atlases for other organisms.

I
ndividual cells are the natural unit of form
and function in biological systems. How-
ever, conventional methods for profiling the
molecular content of biological samples mask
cellular heterogeneity, which is likely pres-

ent even in ostensibly homogeneous tissues (1).
Recently, profiling the transcriptome of indi-
vidual cells has emerged as a powerful strategy
for resolving such heterogeneity. The expression
levels of mRNA species are linked to cellular
function and therefore can be used to classify cell
types (2–10) and order cell states (11). Although
methods for single-cell RNA sequencing (RNA-
seq) have proliferated, they rely on the isolation
of individual cells within physical compartments
(2, 5, 8, 12–17). Consequently, preparing single-
cell RNA-seq libraries with these methods can be
expensive, the cost scaling linearly with the num-
bers of cells processed (18, 19).
We recently developed combinatorial indexing,

a method using split-pool barcoding of nucleic
acids to uniquely label a large number of single

molecules or single cells. Single-molecule com-
binatorial indexing can be used for haplotype-
resolved genome sequencing anddenovo genome
assembly (20, 21), whereas single-cell combina-
torial indexing (“sci”) can be used to profile chro-
matin accessibility (sci-ATAC-seq) (22), genome
sequence (sci-DNA-seq) (23), genome-wide chro-
mosome conformation (sci-Hi-C) (24), and DNA
methylation (sci-MET) (25) in large numbers of
single cells.
In this work, we developed a combinatorial

indexing method to uniquely label the tran-
scriptomes of large numbers of single cells or
nuclei, termed sci-RNA-seq.We applied sci-RNA-
seq to deeply profile single-cell transcriptomes in
the nematode Caenorhabditis elegans at the L2
stage. C. elegans is the only multicellular orga-
nism for which all cells and cell types are defined,
as is its entire developmental lineage (26, 27).
However, despite its modest cell count (e.g., 762
somatic cells per L2 larva), our knowledge of
the molecular state of each cell and cell type
has remained fragmentary. We therefore saw an
opportunity to generate a powerful resource for
nematode biologists, as well as for the single-cell
genomics community.

Overview of sci-RNA-seq

In its current form, sci-RNA-seq relies on the fol-
lowing steps (Fig. 1A): (i) Cells are fixed and
permeabilized withmethanol (alternatively, cells
are lysed and nuclei are recovered), then distrib-
uted across 96- or 384-well plates. (ii) A first mo-
lecular index is introduced to the mRNA of cells
within each well, with in situ reverse transcrip-
tion (RT) incorporating a barcode-bearing, well-

specific polythymidine primer containing unique
molecular identifiers (UMIs). (iii) All cells are
pooled and redistributed by fluorescence-activated
cell sorting (FACS) to 96- or 384-well plates in
limiting numbers (e.g., 10 to 100 per well). Cells
are gated on the basis of DAPI (4′,6-diamidino-
2-phenylindole) staining to discriminate single
cells from doublets during sorting. (iv) Second-
strand synthesis, transposition with transposon
5 (Tn5) transposase, lysis, and polymerase chain
reaction (PCR) amplification are performed.
The PCR primers target the barcoded polythy-
midine primer on one end and the Tn5 adaptor
insertion on the other end, so that resulting PCR
amplicons preferentially capture the 3′ ends of
transcripts. These primers introduce a second
barcode that is specific to each well of the PCR
plate. (v) Amplicons are pooled and subjected
to massively parallel sequencing, resulting in
3′-tag digital gene expression profiles, with each
read associated with two barcodes correspond-
ing to the first and second rounds of cellular
indexing (Fig. 1B). In a variant of the method de-
scribed below, we introduce a third round of
cellular indexing during Tn5 transposition of
double-stranded cDNA.
Most cells pass through a unique combination

of wells, resulting in a unique combination of
barcodes for each cell that tags its transcripts.
The rate of two or more cells receiving the same
combination of barcodes can be tuned by adjust-
ing howmany cells are distributed to the second
set of wells (22). Increasing the number of bar-
codes used during each round of indexing boosts
the number of cells that can be profiled while
reducing the effective cost per cell (fig. S1). Ad-
ditional levels of indexing can potentially offer
even greater complexity and lower costs. Multi-
ple samples (e.g., from different cell populations,
tissues, individuals, time points, perturbations, or
replicates) can be concurrently processed in one
experiment, using different subsets of wells for
each sample during the first round of indexing.

Scalability of sci-RNA-seq

We tested 262 sci-RNA-seq conditions withmam-
malian cells, optimizing the protocol and reaction
conditions.Wedemonstrate scalabilitywith 384 ×
384–well sci-RNA-seq. During the first round of
indexing, half of 384 wells contained pure pop-
ulations of either human [human embryonic kid-
ney 293T (HEK293T) and/or HeLa S3] or mouse
(NIH/3T3) cells, and the other half contained
mixed human and mouse cells (table S1). After
barcoded RT, cells were pooled and then sorted
to a new 384-well plate for the second round of
barcoding and deep sequencing of pooled PCR
amplicons. We recovered 15,997 single-cell tran-
scriptomes and readily assigned cells as human
or mouse (Fig. 1C).

Optimization of sci-RNA-seq and
application to nuclei

We performed optimized 96 × 96–well sci-RNA-
seq on five cell or nucleus populations, each pres-
ent in distinct subsets of wells during the first
round of barcoding (table S1): HEK293T cells
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(8 wells), HeLa S3 cells (8 wells), an intraspecies
mixture of HEK293T andHeLa S3 cells (32 wells),
and interspecies mixtures of HEK293T and NIH/
3T3 cells (24 wells) or nuclei (24 wells). We deeply
sequenced the resulting library (~250,000 reads
per cell, ~210,000 reads per nucleus, ~88% du-
plication rate), profiling 744 single-cell and 175
single-nucleus transcriptomes.
Transcriptomes in the 24 wells containing an

interspecies mixture of human and mouse cells

overwhelmingly mapped to the genome of one
species or the other (289 of 294 cells), with only
five “collisions” (which likely represent coinci-
dental passage through the same wells by two or
more cells) (Fig. 1D). Excluding collisions, we ob-
served an average of 24,454 UMIs (5604 genes)
per human cell and 17,665UMIs (4065 genes) per
mouse cell, with 1.9 and 3.3% of reads per human
and mouse cell, respectively, mapping to the in-
correct species.

Transcriptomes originating in the 24 wells
containing an interspecies mixture of human
and mouse nuclei also overwhelmingly mapped
to the genome of one species or the other (172 of
175 nuclei), with only three collisions (fig. S2A).
Excluding collisions, we observed an average of
32,951 UMIs (5737 genes) per human nucleus and
20,123 UMIs (4107 genes) per mouse nucleus (fig.
S2, B and C), with 2.2 and 1.9% of reads per
human andmouse nucleus, respectively,mapping
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Fig. 1. sci-RNA-seq enables multiplex single-cell transcriptome profil-
ing. (A) Schematic of the sci-RNA-seq workflow. AAAAA, polyadenosine
tail; NVTTTTT, polythymidine primer. (B) Schematic of sci-RNA-seq library
amplicons for Illumina sequencing. bp, base pairs; R, annealing sites for
Illumina sequencing primers; P, Illumina P5 or P7 adaptor sequence.
(C) Scatter plot of unique molecular identifier (UMI) counts from human
and mouse cells, determined by 384 × 384 sci-RNA-seq. Blue, inferred
mouse cells (n = 5953). Red, inferred human cells (n = 3967). Gray,
collisions (n = 884). (D) Scatter plot of UMI counts from human and
mouse cells, determined by 96 × 96 sci-RNA-seq with an optimized

protocol. Blue, inferred mouse cells (n = 129). Red, inferred human cells
(n = 160). Gray, collisions (n = 5). In (C) and (D), only cells originating from
wells containing mixed human and mouse cells are shown. (E) Correlation
between gene expression measurements in aggregated sci-RNA-seq
profiles of NIH/3T3 cells (n = 238) and nuclei (n = 124). (F) t-SNE plot
of cells originating in wells containing HEK293T (red; n = 60), HeLa S3
(blue; n = 69), or a mixture (gray; n = 321). (G) Correlation between gene
expression measurements from aggregated sci-RNA-seq data and bulk
RNA-seq data obtained using a related protocol (29). In (E) and (G), the
red line is the linear regression, and the black line is y = x.
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to the incorrect species. The greater UMI counts
in nuclei are potentially due to the higher amounts
of mRNA in cells resulting in a reduced RT ef-
ficiency per molecule. Consistent with this, op-
timizing the number of cells per RT reaction
increased UMI counts per cell (28).
Estimates of gene expression from the aggre-

gated transcriptomes of nuclei and cells were
well correlated [Pearson correlation coefficient
(r) = 0.96 for HEK293T and 0.97 for NIH/3T3;
Fig. 1E and fig. S2D]. From cells, 81% of reads
mapped to the expected strand of genic regions
(47% exonic and 34% intronic), and 19%mapped
to intergenic regions or the unexpected strand of
genic regions. Fromnuclei, 84% of readsmapped
to the expected strand of genic regions (35% ex-
onic and 49% intronic), and 16% mapped to in-
tergenic regions or the unexpected strand of genic
regions, similar to results from previous studies
(14). Whereas exonic reads showed an expected
enrichment at the 3′ ends of gene bodies, in-
tronic reads did not, and they may be the result

of polythymidine priming from polyadenosine
tracts in heterogeneous nuclear RNA (fig. S3).
Transcriptomes originating in the 48 wells

containing pure or an intraspecies mixture of
HEK293T and HeLa S3 cells were readily sepa-
rated into two clusters by t-distributed stochas-
tic neighbor embedding (t-SNE) (Fig. 1F and fig.
S4). Estimates of gene expression from the ag-
gregated transcriptomes of all identified HEK293T
cells versus those from a related bulk RNA-seq
workflow without methanol fixation [Tn5-RNA-
seq (29)] were well correlated (r = 0.94; Fig. 1G).

Robustness of sci-RNA-seq

After optimizing the number of cells per RT re-
action, we fixed a mixture of HEK293T and NIH/
3T3 cells and performed 16 × 84–well sci-RNA-
seq (table S1) (28). We recovered 168 human cells
and 109 mouse cells with 19 collisions (Fig. 2A).
At ~240,000 reads per cell (73% duplication rate),
we observed an average of 49,043 UMIs (7563
genes) per human cell and 36,737 UMIs (6263

genes) per mouse cell (Fig. 2B and fig. S5A),
with 0.9 and 1.2% of reads per human and mouse
cell, respectively, mapping to the incorrect spe-
cies. Although this and the previous experiment
were performed 2 months apart on indepen-
dently grown and fixed cells, the aggregated
transcriptomes were well correlated (r = 0.98
for HEK293T and 0.98 for NIH/3T3 cells; Fig. 2C
and fig. S5B).
We stored a portion of the methanol-fixed

mixture of HEK293T andNIH/3T3 cells at –80°C
for 4 days and repeated sci-RNA-seq (table S1). At
~200,000 reads per cell (73% duplication rate), we
observed an average of 30,024 UMIs (5965 genes)
per human cell and 21,393 UMIs (4503 genes) per
mouse cell, with comparable purity (fig. S5C). The
aggregated transcriptomes of the fixed-fresh and
fixed-frozen cells were well correlated (r = 0.99
for HEK293T and 0.98 for NIH/3T3 cells; Fig. 2D
and fig. S5D).

sci-RNA-seq with three levels of indexing

Two-level combinatorial indexing enables rou-
tine profiling of ~104 single cells per experiment.
We tested an additional level of indexing during
Tn5 transposition of double-stranded cDNA (22).
We performed 16 × 6 × 16–well sci-RNA-seq on
mixed HEK293T and NIH/3T3 cells after meth-
anol fixation. After RT with 16 barcodes and
second-strand synthesis, cells were pooled and
distributed to six wells for tagmentation with
indexed Tn5 (six barcodes), then pooled again
and sorted to 16 wells for PCRwith indexed prim-
ers. At ~20,000 reads per cell (51% duplication
rate), we recovered 119 human and 62mouse cells
with five collisions (fig. S6A). The aggregated
transcriptomes of three-level and two-level sci-
RNA-seq were well correlated (r = 0.96 for
HEK293T and 0.94 for NIH/3T3 cells; fig. S6, B
and C). Down-sampling to 15,000 reads per cell,
three-level indexing recovered fewer UMIs per
cell than two-level indexing (three-level, on aver-
age, 6033 for HEK293T and 3640 for NIH/3T3
cells; two-level, 9942 for HEK293T and 8611 for
NIH/3T3 cells; fig. S6, D to G), possibly because
of lower efficiency of indexed versus unindexed
Tn5. This limitation notwithstanding, three-level
combinatorial indexing has the potential to en-
able routine profiling of >106 single cells per ex-
periment [fig. S6H (28)].

Single-cell RNA profiling of C. elegans

We next applied sci-RNA-seq to C. elegans. The
cells in C. elegans larvae are much smaller, are
more variably sized, and have lowermRNA content
than the mammalian cell lines on which we opti-
mized the protocol. We pooled ~150,000 larvae
synchronized at the L2 stage and dissociated them
into single-cell suspensions. We then performed
in situ RT across six 96-well plates (576 first-round
barcodes), each well containing ~1000 C. elegans
cells, along with ~1000 human (HEK293T) cells
as internal controls. After pooling all cells, we
sorted the mixture of C. elegans and HEK293T
cells into 10 new 96-well plates for PCR bar-
coding (960 second-round barcodes), gating on
DNA content to distinguish between C. elegans
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Fig. 2. sci-RNA-seq shows robust gene expression measurements. (A) Scatter plot of UMI
counts from human and mouse cells, determined by a 16 × 84 sci-RNA-seq experiment on
mixed HEK293T and NIH/3T3 cells (table S1). Blue, inferred mouse cells (n = 109). Red, inferred
human cells (n = 168). Gray, collisions (n = 19). (B) Box plots showing the number of UMIs detected
per cell (thick horizontal lines, medians; upper and lower box edges, first and third quartiles,
respectively; whiskers, 1.5 times the interquartile range; circles, outliers). (C) Correlation between
gene expression measurements in aggregated sci-RNA-seq profiles from two experiments performed
2 months apart on independently grown and fixed cells. (D) Correlation between gene expression
measurements in aggregated sci-RNA-seq profiles of fixed-fresh and fixed-frozen cells. In (C) and
(D), the red line is the linear regression, and the black line is y = x.
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and HEK293T cells. This sorting resulted in
96% of wells harboring only C. elegans cells
(140 each) and 4% of wells harboring a mix of
C. elegans and HEK293T cells (140 C. elegans
and 10 HEK293T each).
This experiment yielded 42,035 C. elegans

single-cell transcriptomes (UMI counts per cell
for protein-coding genes ≥ 100). Ninety-four per-
cent of reads mapped to the expected strand of
genic regions (92% exonic and 2% intronic). At a
sequencing depth of ~20,000 reads per cell and a
duplication rate of 80%, we identified a median
of 575 UMIs mapping to protein-coding genes
per cell (mean, 1121 UMIs and 431 genes per cell)
(fig. S7A). Importantly, control wells containing
both C. elegans and HEK293T cells demonstrated
clear separation between species (fig. S7B), with
3.1 and0.2%of reads perC. elegans andhuman cell
mapping to the incorrect species, respectively.

Identifying cell types

Semi-supervised clustering analysis segregated
the cells into 29 distinct groups, the largest con-
taining 13,205 (31.4% of) and the smallest only
131 (0.3% of) cells (Fig. 3A). Somatic cell types
totaled 37,734 cells. We identified genes that
were expressed specifically in a single cluster, and,
by comparing those genes to expression patterns
reported in the literature, assigned the clusters to
cell types (figs. S15 to S23). Twenty-six cell types
were represented in the 29 clusters: Nineteen
represented exactly one literature-defined cell
type, seven containedmultiple distinct cell types,
two contained cells of a specific cell type but had
abnormally low UMI counts, and one could not
be readily assigned. Neurons, which were pres-
ent in seven clusters in the global analysis, were
independently reclustered, initially revealing
10 major neuronal subtypes.
Intestine cells were not represented in any

cluster. Intestine cells make up 2.5% of the so-
matic cells but are polyploid in C. elegans larvae
(30) and autofluorescent in the DAPI channel
used to measure DNA content (31). We specu-
lated that they may have been excluded by how
we gated on DNA content. We therefore per-
formed a second, 384 × 144–well C. elegans ex-
periment, collecting all cells, including polyploid
cells, on the basis of DAPI fluorescence (96 wells)
or gating to enrich for polyploid cells (48 wells).
Intestine cells were present (unlike in the pre-
vious experiment) and, in wells gated for poly-
ploidy, enriched twofold. This experiment yielded
7325 cells (UMI counts per cell for protein-coding
genes ≥ 200), of which 6335 were somatic and
511 were intestine cells (fig. S8A).
Gene expression patterns in hypodermal cells

suggested that the worm cells from the second
C. elegans experimentweremore tightly synchro-
nized, overlapping but not identical in devel-
opmental timing to the first experiment (fig.
S8, B to F). C. elegans larvae have pervasive os-
cillations in gene expression within each larval
stage (32), making it difficult to distinguish bio-
logical variation from batch effects. However, the
aggregated transcriptomes ofHEK293T cells from
these same experiments were well correlated (r =

0.97) and not readily separated by t-SNE (fig. S9).
This suggests that the variation observed is pri-
marily due to differences in the developmental
timing or preparation of the C. elegans larvae

and cells, rather than technical variation in the
sci-RNA-seq protocol. Regardless of its source,
to minimize confounding by this variation, we
only included the intestine cells from the second
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Fig. 3. A single sci-RNA-seq experiment highlights the single-cell transcriptomes of the
C. elegans larva. (A) t-SNE visualization of the high-level cell types identified. (B) Bar graph
showing the percentage of somatic cells profiled in the first sci-RNA-seq C. elegans experiment
that could be identified as belonging to each cell type (red), compared with the percentage of
cells from that type expected in an L2 C. elegans individual (blue). (C) Scatter plots showing
the log-scaled transcripts per million (TPM) values of genes in the aggregation of all sci-RNA-seq
reads (x axis) or in bulk RNA-seq (y axis; geometric mean of three experiments). Red line,
y = x; blue line, linear regression. The top plot includes only the first sci-RNA-seq experiment.
The bottom plot also includes intestine cells from the second sci-RNA-seq experiment.
(D) Number of genes that are at least five times as highly expressed in a specific tissue as in
the second-highest-expressing tissue, excluding genes for which the differential expression
between the first- and second-highest expressing tissues is not significant (q > 0.05). (E) Same
as (D), except comparing cell types instead of tissues. (F) Heat map showing the relative expression
of genes in consensus transcriptomes for each cell type, estimated by sci-RNA-seq. Genes are
included if they have a size factor–normalized mean expression of >0.05 in at least one cell type
(8613 genes in total). The raw expression data (UMI count matrix) is log-transformed, column-
centered, and scaled (using the R function scale), and the resulting values are clamped to the
interval (–2, 2). GABA, g-aminobutyric acid.
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C. elegans experiment in subsequent analyses,
with all other cell types being represented by the
first experiment only.
The global and neuron-specific clustering

analyses from the first C. elegans experiment, sup-
plemented with intestine cells from the second
experiment, allowed us to construct aggregate ex-
pression profiles for 27 cell types (tables S2 to S4;
a 28th cell type, dopaminergic neurons, was ex-
cluded because of small cell numbers). These
profiles are available online through GExplore
(http://genome.sfu.ca/gexplore/gexplore_search_
tissues.html; fig. S14). Comparing the observed
proportions of each cell type with their known
frequencies in L2 larvae showed that sci-RNA-seq
captured many cell types at or near expected fre-
quencies (15 of 28 types had abundances ≥50%

and 27 of 28 had abundances ≥20% of expecta-
tion; Fig. 3B).
Transcriptional programs can be readily dis-

tinguished within single-cell transcriptome data
sets at shallow sequencing depths (33). There-
fore, our molecular profile for individual cell
types in L2 worms may still be incomplete.
However, we observed that half of all C. elegans
protein-coding genes were expressed in at least
100 cells in the full data set, and 66% of protein-
coding genes were expressed in at least 20 cells.
This compares favorably with the estimates of ex-
pressed genes at the L2 stage from whole-animal
RNA-seq (69%) (34). The “whole-worm” expres-
sion profile derived by aggregating all sci-RNA-
seq reads correlated well with whole-animal bulk
RNA-seq (34) for L2 C. elegans (Spearman cor-

relation coefficient = 0.796 with cells from the
first experiment only and 0.824 including in-
testine cells from the second experiment; Fig. 3C).
Furthermore, 3925 genes were significantly en-
riched in a single tissue (Fig. 3D and table S6),
and 1939 genes were enriched for expression in
a single cell type (Fig. 3E and table S7). Thus, de-
spite the fact that sci-RNA-seq captures a minor-
ity of transcripts in each cell, our “oversampling”
of the cellular composition of the organism en-
abled us to construct representative expression
profiles for individual cell types (Fig. 3F).

Neuronal cell types

Because the transcripts of tissue or cell type
clusters suggested subdivisions within groups
(Fig. 3A),we examined expression in several tissues
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Fig. 4. sci-RNA-seq reveals the transcriptomes of fine-grained ana-
tomical classes of C. elegans neurons. (A) t-SNE visualization of high-
level neuronal subtypes. Cells identified as neurons from the t-SNE
clustering shown in Fig. 3A were reclustered with t-SNE. NA, not assigned.
(B) Clusters in the neuron t-SNE that can be identified as corresponding to
one, two, or four specific neurons in an individual C. elegans larva. The
number of neurons of each type is shown in parentheses. (C) Heat map
showing the relative expression of high-neuronal-expression genes across
40 neuron clusters identified by t-SNE and density peak clustering. Genes
are included if their expression in the aggregate transcriptome of all neurons
in our data is more than five times that of their expression in any other
tissue, excluding cases where the differential expression is not significant

(q>0.05). (D) Distribution for each neuron cluster of the number of genes in
that cluster whose expression is more than five times that in the second-
highest expressing neuron cluster (q for differential expression < 0.05).
(E) Cartoon illustrating the position of the left and right ASE neurons
(pink) relative to the pharynx (green). [From www.wormatlas.org (56)]
(F) Volcano plot showing differentially expressed genes between the left
and right ASE neurons. Points in red correspond to genes that are
differentially expressed (q < 0.05) with more than a threefold difference
between the higher- and lower-expressing neuron(s). (G) The left AWA
and ASG neurons arise from the embryonic cell AB plaapapa; the right AWA
and ASG neurons arise from AB praapapa. (H) Volcano plot showing
differentially expressed genes between the AWA and ASG neurons.
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in more detail. We confirmed and extended find-
ings that anterior and posterior body wall muscles
have distinct expression patterns (fig. S10, A and B,
and table S9) (35) and observed distinct expres-
sion patterns for posterior versus other intestine
cells (fig. S10, C andD, and table S10) and amphid
versus phasmid sheath cells (fig. S10, E and F, and
table S11). But gene expression patterns were
particularly diverse in neuronal cell types.
By morphological criteria, the 302 neurons

of the worm are classified into 118 distinct types
(36), and from the database of reporter transgene
expression patterns, most of these are postulated
to have unique molecular signatures (37). Our
initial reclustering of neuronal cells divided them
into 10 broad classes (Fig. 4A). Most classes of
neurons were represented by several small but
highly distinct clusters in the t-SNE plot. Further
analysis of cluster-specific gene expression showed
that many clusters corresponded to highly spe-
cific subsets of neurons in the L2 worm (Fig. 4B
and table S7). Three clusters corresponded to sets
of four neurons in an individual worm, eight clus-
ters corresponded to a single pair of neurons (the
AFD, ASG, ASK, AWA, BAG, CAN, RIA, and RIC
neuron pairs), and three clusters corresponded
to exactly one neuron [the left ASE (ASEL), right
ASE (ASER), and DVA neurons]. Hierarchical
clustering analysis showed that most of the 917
genes that were highly expressed in neurons,
relative to other tissues, were expressed in only
aminority of neuronal clusters (Fig. 4C). Of these
917 genes, 73% had no more than 10 neuron clus-
ters (out of 40 total) inwhich theywere expressed
at ≥10% of the level of the highest-expressed clus-
ter. Furthermore, 155 of these geneswere expressed
predominantly in a single neuronal cluster (at
least a fivefold difference between the highest-
and second-highest-expressing neuronal cluster)
(Fig. 4D and table S8).
Expressions of marker genes, such as gcy-3

and gcy-6, were key in identifying two neuronal
clusters as the ASEL and ASER gustatory neu-
rons, respectively (Fig. 4E). These neurons have
asymmetry in gene expression (38), and we ob-
served 44 genes to be differentially expressed (fold
difference > 3, false discovery rate < 5%; Fig. 4F
and table S12). mRNA from these neurons has
previously been profiled with coimmunoprecipi-
tation of RNA and a transgenic polyadenylate-
binding protein expressed specifically in ASEL or
ASER, followed by microarray analysis (39). The
differentially expressed genes that we observed
are consistent with this previous study (fig. S11),
highlighting the ability of sci-RNA-seq to facili-
tate the analysis of cell types with frequencies as
rare as a single cell per individual.
Two neuronal clusters correspond to sister

cells, the AWA and ASG neurons (Fig. 4G), which
arise from the same parental cell in the last round
of C. elegans embryonic cell divisions. Their dif-
ferentiation has previously been used as a model
for the study of the regulation of cell fate de-
cisions (40). In our data, 136 genes were dif-
ferentially expressed between these two cell types
(fold difference > 3, false discovery rate < 5%; Fig.
4H and table S13). The divergent transcriptomes

of the AWA and ASG neurons, along with those
of the ASEL and ASER neurons, highlight the
potential of cells that are extremely closely re-
lated in morphology and developmental lineage
to feature distinct programs of gene regulation.

Integration with transcription factor
binding sites

We hypothesized that correlating transcription
factor (TF) binding patterns—profiled in chro-

matin immunoprecipitation (ChIP)–seq exper-
iments by the modENCODE (41) and modERN
(42) consortia—with gene expression profiles by
cell type could give insights into the regulatory
programs underlying the gene expression pro-
files. For each of 27 cell types, we constructed
regularized regression models to predict each
gene’s expression as a function of the TF ChIP
peaks present in its promoter (Fig. 5). We re-
stricted a cell type’s model to those TFs that
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Fig. 5. Cell type–specific expression profiles from sci-RNA-seq enable the deconvolution of
whole-animal transcription factor ChIP-seq data. For each of 27 cell types, a regularized
regression model was fit to predict log-transformed gene expression levels in that cell type on
the basis of ChIP-seq peaks in gene promoters (28). The ChIP-seq data were generated by the
modENCODE (41) and modERN (42) consortia, profiling transcription factor binding in whole
C. elegans animals. “EM” next to a TF label indicates that the ChIP-seq data for the TF are from
an embryonic stage; “PE” indicates that the data are from a postembryonic stage. Colors in the
heat map show the extent to which having a ChIP-seq peak for a given TF in a gene promoter
correlates with increased expression in a given cell type. Peaks in “HOT” regions (28) are
excluded. Gray cells in the heat map correspond to cases where a TF is not expressed in a cell type
(<10 TPM), in which case ChIP-seq data for that TF are not considered by the regression model.
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were detectably expressed within it [>10 tran-
scripts per million (TPM)], increasing the pro-
portion of TF–cell type associations that are
likely to reflect causal gene regulation. Our re-
gression model selected numerous regulators
that are critical for the development or proper
function of specific cell types, including hlh-1 and
unc-120 in body wall muscle (43), pha-4 in pha-
ryngeal cell types (44), hlh-8 (encoding CeTwist)
in sex myoblasts (45), blmp-1 and nhr-25 in the
hypodermis (46, 47), elt-2 in the intestine (48), and
xnd-1 in the germ line (49, 50).
The regression identified several previously un-

known regulators of cell type–specific expression.
For example, fkh-8,which is expressed specifically
in ciliated sensory neurons [our data and reporter
construct from (51)], was predictive of their gene
expression program (fig. S12). The uncharacter-
ized TF F49E8.2 is expressed specifically in the
germ line and associated with germline gene ex-
pression (fig. S12). The gene encoding F49E8.2 is
an ortholog of the human gene E2F-associated
phosphoprotein (EAPP) (52), and F49E8.2 ChIP-
seq peaks colocalize with germ line-specific EFL-1
peaks [ortholog of E2F; data from (53)] more
often than could be expected as a result of chance
(c2 test, P = 2.8 × 10−21; fig. S13, A and B), sug-
gesting that these proteins may physically inter-
act. The hypodermis-associated TF-encoding genes
blmp-1 and nhr-25 were also associated with gene
expression in socket cells, excretory cells, and rectal
cells. nhr-25 is expressed 4.5 times as much in
socket cells as in seam cells (560 versus 124 TPM)
and 8.7 times as much as in the nonseam hypo-
dermis (560 versus 64 TPM), suggesting a role in
glial development.

Discussion

Our method for single-cell RNA-seq combina-
torial indexing of cells or nuclei, sci-RNA-seq, can
be applied to profile the transcriptomes of tens of
thousands of single cells per experiment through
a library construction completed by a single per-
son in 2 days, at a cost of $0.03 to $0.20 per cell.
sci-RNA-seq is compatible with cell fixation,
which can minimize perturbations to cell state
or RNA integrity before or during processing and
facilitates the concurrent processing of multiple
samples within a single experiment, potentially
reducing batch effects relative to platforms requir-
ing serial processing, an area of concern for the
single-cell RNA-seq field (54). Given that the sec-
ond barcode is introduced after flow sorting, it is
also possible to associate wells on the PCR plate
with FACS-defined subpopulations. sci-RNA-seq
is also compatible with nuclei, which may be im-
portant for tissues for which unbiased cell dis-
aggregation protocols are not well established
(possibly most tissues). Lastly, sci-RNA-seq is
scalable. We demonstrated indexing up to 576 ×
960, which enabled the generation of ~4 × 104

single-cell transcriptomes in one experiment.
However, processing of more cells with sublinear
cost scaling is possible by using more barcoded
RT and PCR primers (e.g., 1536 × 1536 combi-
natorial indexing) and/or introducing additional
rounds of indexing. With 384 × 384 × 384 com-

binatorial indexing, one couldhypothetically profile
the transcriptomes of more than 10million cells
per experiment.
With sci-RNA-seq, we generated a catalog of

single-cell transcriptomes with >50-fold “shot-
gun” cellular coverage of the L2 C. elegans soma.
We detected 18 non-neuronal cell types and many
neuronal cell types, which we grouped into
either 10 broad classes or 40 fine-grained clus-
ters from an unsupervised analysis, highlighting
the potential of an organism’s gene regulatory
programs to be enacted at a fine-grained level.
We anticipate that these data will be a rich re-
source for nematode biology—a starting point
for an atlas that leverages Sulston’s lineage
map to define the molecular state of every cell
throughout the life cycle of C. elegans. In addi-
tion, as illustrated by our experience with intesti-
nal cells, the greater knowledge of “ground truth”
in C. elegans may further the refinement of ex-
perimental and computational methods for re-
covering and distinguishing cell types and states.
To this end, we have created a website to facil-
itate the further annotation of these data by the
community (http://atlas.gs.washington.edu). Gene-
by-cell matrices and vignettes for how to work
with the data are also hosted at this site.
sci-RNA-seq expands the repertoire of single-

cell molecular phenotypes that can be resolved
by combinatorial indexing (22–25). Provided that
multiple aspects of cellular biology can be con-
currently barcoded, combinatorial indexing may
also facilitate the scalable generation of “joint”
single-cell molecular profiles (e.g., RNA-seq and
ATAC-seq from each of many single cells). We
also envision that large-scale, integrated profil-
ing of the molecular states and lineage histories
(55) of single cells in other organisms will begin
to give shape to global views of their develop-
mental biology.
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